Тема: Устройства ПК.

Учебныевопросы :

1. Устройства, составляющие архитектуру ПК.

2. Внутренние устройства ПК.

3. Внешние устройства ПК.

Современные ЭВМ весьма разнообразны как по своему устройству, так и по исполняемым функциям.

Если рассматривать ЭВМ по их функциональности, можно условно классифицировать их:

1. «Бытовые» ЭВМ (ПК);

2. «Учебные» ЭВМ (упрощенной архитектуры);

3. «Профессиональные» ЭВМ (рабочие станции на производстве, в офисе и др.);

4. ЭВМ-серверы (управление рабочими станциями, объединенными в сети, хранение больших массивов информации и т.д.) и др.

В зависимости от выполняемых функций и, благодаря открытой архитектуре устройство ЭВМ весьма разнообразно. В результате научно-технического развития архитектура ЭВМ постоянно усовершенствуется (эволюционирует).

Открытая архитектура современных ПК:

Интерфейсная система

Архитектура ЭВМ – это наиболее общие принципы построения, реализующие программное управление взаимодействием её основных узлов. Архитектура ЭВМ – это, прежде всего блоки и устройства, а также структура связей между ними.

Блоки и устройства, составляющие архитектуру ПК, кроме того разделяют на две группы:

· внутренние устройства;

· внешние (периферийные) устройства.

Внутренние устройства, вероятно, получили такое обобщающее название, так как объединены в одном корпусе , называемом системным блокомПК .

Внешний вид и размеры корпусов системных блоков разнообразны. Однако обязательным для всех корпусов элементом являются разъёмы для подключения внешних устройств и интерфейс управления .

При огромном разнообразии вариантов, составляемых из устройств, систем, помещенных в корпус системного блока, обязательно наличие минимальной их комплектации .

К «обязательным» относятся:

· Блок питания . В среднем мощность их составляет 100 – 400 Вт. Чем больше устройств в системе, тем большую мощность должен иметь блок питания. (Средняя мощность 200 – 300 Вт).

· Системная (материнская) плата . Это многофункциональное устройство является центральным для ЭВМ с открытой архитектурой. По физическому строению она представляет собой очень сложно организованную многослойную печатную плату.



С точки зрения функциональности системная плата выполняет комплекс функций по интеграции устройств и обеспечению их взаимодействия.

По мере того, как элементы конфигурации архитектуры ЭВМ стандартизируется, реализуется тенденция включения их в состав материнской платы.

Первая материнская плата была разработана фирмой IBM в августе 1981 года (PC-1). С самого начала материнская плата задумывалась как компонент, обеспечивающий механическое соединение и электрическую связь между всеми прочими аппаратными средствами. Кроме этих функций, она также осуществляет подачу электроэнергии (питание) на компоненты компьютера.

Архитектура современной системной платы (обобщенная) .

Современная МП содержит большое количество контроллеров (специализированных микропроцессоров) обеспечивающих взаимодействие всех устройств. Они реализованы в двух наборах микросхем, исторически получивших название «северный мост» и «южный мост» или чипсетов .

· Контроллер-концентратор памяти, или «северный мост» (англ. North Bridge) обеспечивает работу процессора, оперативной памяти и видеоподсистемы;

· Контроллер-концентратор ввода-вывода, или «Южный мост» (англ. South Bridge) обеспечивает работу с внешними устройствами.

Пропускная способность шины.

Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются.

Быстродействие устройства зависит от:

· тактовой частоты обработки данных (обычно измеряется в мегагерцах – МГц);

· и разрядности, т.е. количества битов данных, обрабатываемых за один такт (промежуток времени между подачей электрических импульсов, синхронизирующих работу устройств ПК).

Соответственно скорость передачи данных – пропускная способность соединяющих эти устройства шин также должна различаться. Пропускная способность шины равна разрядности шины (биты) умноженной на частоту шины (Гц – герцы. 1Гц = 1 такт в секунду ).

Системная шина (FSB от англ. Front Side Bus) осуществляет передачу данных между «Северным мостом» и микропроцессором. В современных ПК системная шина имеет разрядность 64 бита и частоту 400 МГц – 1600 МГц.

Пропускная способность может достигать 12,5 Гбайт/с.

Шина памяти осуществляет передачу данных между «Северным мостом» и оперативной памятью ПК. Имеет те же показатели, что и системная шина.

Шина PCI Express (Peripherial Component Interconnect Bus Express – ускоренная шина взаимодействия периферийных устройств) осуществляет передачу данных между «Северным мостом» и видеоплатой (видеокартой). Пропускная способность этой шины может достигать 32 Гбайт/с.

Шина SATA (англ. Serial Advanced Technology Attachment – последовательная шина подключения накопителей) осуществляет передачу данных между «Южным мостом» и устройством внешней памяти (жесткие диски, CD и DVD дисководы, дискеты). Пропускная способность может достигать 300 Мбайт/с.

Шина USB (англ. Universal Serial Bus – универсальная последовательная шина) осуществляет передачу данных между «Южным мостом» и разнообразными внешними устройствами (сканерами, цифровыми камерами и др.). Пропускная способность до 60 Мбайт/с. Обеспечивает подключение к ПК одновременно до 127 периферийных устройств.

Другие важные функции системной платы – обеспечение механического соединения и электрической связи между всеми прочими аппаратными средствами, а также подачи на них питания.

Существует большое разнообразие конструктивных решений системных плат.

Одной из характеристик системной платы является форм-фактор (AT/ATX). Она определяет размеры системной платы и расположений на ней компонентов аппаратных средств.

Упрощенная схема размещения компонентов СП.

Центральным блоком ПК считается расположенный в специальном разъёме системной платы электронный блок получивший название процессор или микропроцессор .

Первоначально микропроцессор объединил на одном кристалле кремния СБИС арифметико-логического устройства (АЛУ ) и устройства управления (УУ ).

Выполняемые микропроцессором команды предусматривают обычно арифметические действия, логические операции, передачу управления и перемещение данных между регистрами, оперативной памятью и портами ввода-вывода. С внешними устройствами микропроцессор сообщается благодаря своим шинам адреса, данных и управления, выведенным на специальные контакты корпуса микросхемы.

Устройство управления вырабатывает управляющие сигналы, поступающие по шинам инструкций во все блоки ЭВМ.

Упрощенная схема УУ

Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции.

Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Дешифратор операций, считывая код операции из регистратора команд, выбирает в ПЗУ микропрограмм необходимую последовательность управляющих сигналов ­– код команды.

Узел формирования адреса – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд.

Кодовые шины данных, адреса и инструкций – части внутренней шины микропроцессора, осуществляющие передачу сигналов между процессором и другими устройствами ПК.

В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:

· выборки из регистра - счетчика адреса ячейки ОЗУ, где хранится очередная команда программы;

· выборки из ячеек ОЗУ, когда очередной команды и приёма считанной команды в регистр команд;

· расшифровки кода операции и признаков выбранной команды;

· считывания из соответствующих расшифрованному коду операций ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках ЭВМ процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;

· считывания из регистра команд и регистром МПП (микропроцессорной памяти) отдельных составляющих адресов операндов;

· выборки операндов и выполнения заданной операции их обработки;

· записи результатов в памяти;

· формирование адреса следующей команды программы.

Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации.

Системная шина - это основная интерфейсная система ПК, обеспечивающая сопряжение и связь всех его устройств между собой.

Основной функцией системной шины является передача информации между процессором и остальными устройствами ЭВМ . Все блоки, а точнее их порты ввода-вывода, через соответствующие разъемы подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры).

Управление системной шиной осуществляется непосредственно, либо, чаще через контроллер шины . Обмен информацией между ВУ и системной шиной выполняется с использованием ASCII-кодов. Системная шина состоит из трех шин: шины управления, шины данных и адресной шины. По этим шинам циркулируют управляющие сигналы, данные (числа, символы), адреса ячеек памяти и номера устройств ввода-вывода. Важнейшими функциональными характеристиками системной шины являются: количество обслуживаемых ею устройств и ее пропускная способность, т.е. максимально возможная скорость передачи информации. Пропускная способность шины зависит от ее разрядности (есть шины 8-, 16-, 32- и 64-разрядные) и тактовой частоты, на которой шина работает.

· Адресная шина.У процессоров Intel Pentium (а именно они наиболее распростра­нены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комби­нация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

· Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе про­цессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

· Шина команд . Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, из тех областей, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укла­дываются в один байт, однако, есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная (напри­мер, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Процессор.

Процессор (ЦП) выполняет логические и арифметические операции, определяет порядок выполнения операций, указывает источники данных и приемники результатов. Работа процессора происходит под управлением программы.

Процессор - основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки опе­ративной памяти, но в этих ячейках данные могут не только храниться, но и изме­няться. Внутренние ячейки процессора называют регистрами. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имею­щих стандартную длину 1 байт и более низкое быстродействие);

При первом знакомстве с ЭВМ считают, что процессор состоит из пяти устройств: арифметико-логического устройства (АЛУ), устройства управления (УУ), регистров общего назначения (РОН), кэш-памяти и генератора тактовых частот.

устройство управления (УУ)- формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импуль­сы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ, т.е. отвечает за порядок выполнения команд, из которых состоит программа.

арифметико-логическое устройство (АЛУ)- предназначено для вы­полнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор), Промежуточные результаты сохраняются в РОН .

местная память (МПП) - служит для кратковременного хра­нения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах общего назначения (РОН) и используется для обеспечения высокого быстродействия машины, ибо оперативная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

· Кэш- память служит для повышения быстродействия процессора, путем уменьшения времени его непроизводительного простоя. Она применяется для кратковременного хра­нения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. Кэш- память строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо оперативная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память.

Нередко кэш-память распределяют по нескольким уровням кеш L1 (level1-первого уровня) и L2 (level2 – второго уровня). Кэш первого уровня выполняется в том же кристалле, что и сам процессор, имеет объем порядка десят­ков Кбайт и обычно работает на частоте, согласованной с частотой ядра процессора. Кэш второго уровня находится либо в кристалле процессора, либо она размещена на материнской плате вблизи процессора, тогда ее объемы могут достигать нескольких Мбайт, но работает она на частоте материнской платы.

· генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая опера­ция в машине выполняется за определенное количество тактов:

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти. Часть данных он интерпретирует непосред­ственно как данные, часть данных - как адресные данные, а часть - как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относя­щиеся к одному семейству, имеют одинаковые или близкие системы команд. Про­цессоры, относящиеся к разным семействам, различаются по системе команд и не взаимозаменяемы.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процес­сором. Процессоры, имеющие разные системы команд, как правило, несовмести­мы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86.

Основные параметры процессоров. Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты (множитель) и размер кэш-памяти.

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенно! понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В, а в настоящее время оно составляет менее 3 В. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры х86 был 16-разрядными. Начиная с процессора 80386, они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяете не разрядностью шины данных, а разрядностью командной шины).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник, а в персональном компью­тере тактовые импульсы задает одна из микросхем, входящая в микропроцессор­ный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в еди­ницу времени, тем выше его производительность.

По чисто физическим причинам, так как она представляет собой не кристалл кремния, а большой набор проводни­ков и микросхем, материнская плата не может рабо­тать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внут­реннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более, т.о. если частота системной шины 133 Мгц, а коэффициент (множитель ядра) равен 8, то рабочая тактовая частота составит 1Ггц.

Вся история IBM PC связана с процессорами фирмы Intel, которая выпускает эти микросхемы с 1970г, начиная с четырехразрядного 4004. Дадим неформальную характеристику основных параметров этих процессоров.

Микропроцессор Начало выпуска Разрядность Тактовая частота, Мгц. Быстродействие Примечание
8июня 1978г. 16 бит 0,33 MIPS 0,66 MIPS 0,75 MIPS
февраль1982г 16 бит 0,9 MIPS 1,5 MIPS 2,66 MIPS
80386DX 17.10.1985г. 32 бита 5-6 MIPS 6-7 MIPS 8,5 MIPS
11,4 MIPS 16 Kb кеш–памяти второго уровня (впервые)
80386SX 16июня1988г 16 бит 2,5 MIPS 2,5 MIPS 2,7 MIPS 2,9 MIPS
80386SL 15октября1989 16 бит 4,2 MIPS 5,3 MIPS Первый процессор специально предназначенный для персональных компьютеров
80486DX 10апреля1989г 32 бит 20 MIPS 7,4 MFLOPS 27 MIPS 22,4 MFLOPS 41 MIPS 14,5 MFLOPS Производительность возросла в 50 раз по сравнению с 8086
80486SX 22апреля1991г 32 бита 13 MIPS 20 MIPS 27 MIPS Аналог 80486 но без сопроцессора.
Pentium 22марта 1993г 32 бита 100 MIPS 55,1 MFLOPS 112 MIPS 63,6 MFLOPS 126,5 MIPS 2,02 GFLOPS 203 MIPS 2,81 GFLOPS 3,92GFLOPS
Pentium PRO 1ноября1995г
Pentium с технологией MMX 2июня 1997г. 32 бита 5,21 GFLOPS Технология MMX обеспечивает увеличение производительности процессора при работе с мультимедийными и трехмерными приложениями.
Pentium II 7 мая 1997г
Celeron 12апреля1998г Удешевленная версия Pentium II за счет изъятия кэш 2-го уровня
Xeon
PentiumIII Расширенный PentiumII за счет 70 дополнительных команд, позволяющих ускорить расчеты, применяемые в трехмерной графике. Благодаря этому выполняет до 4 операций над числами с плавающей точкой одновременно.
PentiumIV

Введение

1. Внутренние шины

1.1.1 PCI Express 1.0

1.1.2 PCI Express 2.0

1.1.3 PCI Express 3.0

1.2 HyperTransport

2. Внешние шины

2.3.1 SATA Revision 2.x

2.3.2 SATA Revision 3.x

2.4 SerialAttachedSCSI

2.4.2 Новые функции SAS 2.0

Заключение

Список информационных источников


Компьютерная ши́на (от англ. computer bus, bidirectional universal switch - двунаправленный универсальный коммутатор) - в архитектуре компьютера, подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов (соединений) для физического подключения устройств, карт и кабелей.

Ранние компьютерные шины представляли собой параллельные электрические шины с несколькими подключениями, но сейчас данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины.

Компьютерная шина служит для передачи данных между отдельными функциональными блоками компьютера и представляет собой совокупность сигнальных линий, которые имеют определенные электрические характеристики и протоколы передачи информации. Шины могут различаться разрядностью, способом передачи сигнала (последовательные или параллельные, синхронные или асинхронные), пропускной способностью, количеством и типами поддерживаемых устройств, протоколом работы, назначением (внутренняя или интерфейсная).


1.1.1 PCI Express 1.0

PCI Express - компьютерная шина, использующая программную модель шины PCI и высокопроизводительный физический протокол, основанный на последовательной передаче данных.

Последовательная шина PCI Express, разработанная Intel и ее партнерами, призвана заменить параллельную шину PCI и ее расширенный и специализированный вариант AGP.

Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка, называемое lane; это резко отличается от PCI, в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

Соединение между двумя устройствами PCI Express называется link, и состоит из одного (называемого 1x) или нескольких (2x, 4x, 8x, 12x, 16x и 32x) соединений lane. Каждое устройство должно поддерживать соединение 1x.

На электрическом уровне каждое соединение использует низковольтную дифференциальную передачу сигнала (LVDS), приём и передача информации производится каждым устройством PCI Express по отдельным двум проводникам, таким образом, в простейшем случае, устройство подключается к коммутатору PCI Express всего лишь четырьмя проводниками.

Использование подобного подхода имеет следующие преимущества:

· карта PCI Express помещается и корректно работает в любом слоте той же или большей пропускной способности (например, карта x1 будет работать в слотах x4 и x16);

· слот большего физического размера может использовать не все lane’ы (например, к слоту 16x можно подвести линии передачи информации, соответствующие 1x или 8x, и всё это будет нормально функционировать; однако, при этом необходимо подключить все линии «питание» и «земля», необходимые для слота 16x).

В обоих случаях, на шине PCI Express будет использовать максимальное количество lane’ов доступных как для карты, так и для слота. Однако это не позволяет устройству работать в слоте, предназначенном для карт с меньшей пропускной способностью шины PCI Express (например, карта x4 физически не поместится в слот x1, несмотря на то, что она могла бы работать в слоте x4 с использованием только одного lane).

PCI Express пересылает всю управляющую информацию, включая прерывания, через те же линии, что используются для передачи данных. Последовательный протокол никогда не может быть заблокирован, таким образом задержки шины PCI Express вполне сравнимы с таковыми для шины PCI. Во всех высокоскоростных последовательных протоколах (например, GigabitEthernet), информация о синхронизации должна быть встроена в передаваемый сигнал. На физическом уровне, PCI Express использует ставший общепринятым метод кодирования 8B/10B (8 бит данных заменяются на 10 бит, передаваемых по каналу, таким образом 20% трафика является избыточными), который позволяет поднять помехозащищённость.

Шина PCI работает на частоте 33 или 66 МГц и обеспечивает пропускную способность 133 или 266 Мб/сек, но эта пропускная способность делится между всеми устройствами PCI. Частота, на которой работает шина PCI Express - 2.5 ГГц, что дает пропускную способность 2500 МГц / 10 * 8 = 250 * 8 Мбит/сек = 250 Мб/сек для каждого устройства PCI Express x1 в одном направлении. При наличии нескольких линий для вычисления пропускной способности величину 250 Мб/сек надо умножить на число линий и на 2, т.к. PCI Express является двунаправленной шиной (Табл.1).


Табл.1 таблица пропускной способности PCI.

Кроме того, шиной PCI Express поддерживается:

· горячая замена карт;

· гарантированная полоса пропускания (QoS);

· управление энергопотреблением;

· контроль целостности передаваемых данных.

1.1.2 PCI Express 2.0

Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года. Основные нововведения в PCI Express 2.0:

· Увеличенная пропускная способность - спецификация PCI Express 2.0 определяет максимальную пропускную способность одного соединения lane как 5 Гбит/с. Внесены усовершенствования в протокол передачи между устройствами и программную модель.

· Динамическое управление скоростью - для управления скоростью работы связи.

· Оповещение о пропускной способности - для оповещения ПО (операционной системы, драйверов устройств и т.п.) об изменениях скорости и ширины шины.

· Расширения структуры возможностей - расширение управляющих регистров для лучшего управления устройствами, слотами и интерконнектом.

· Службы управления доступом - опциональные возможности управления транзакциями точка-точка.

1.1.3 PCI Express 3.0

PCI-SIG в середине августа 2010 года представила версию 0.9 спецификации PCI Express 3.0.

Для пользователей основное отличие между PCI Express 2.0 и PCI Express 3.0 будет заключаться в значительном увеличении максимальной пропускной способности. У PCI Express 2.0 сигнальная скорость передачи составляет 5 ГТ/с (гигатранзакций в секунду), то есть пропускная способность равняется 500 Мбайт/с для каждой линии. Таким образом, основной графический слот PCI Express 2.0, который обычно использует 16 линий, обеспечивает двунаправленную пропускную способность до 8 Гбайт/с.

У PCI Express 3.0 мы получим удвоение этих показателей. PCI Express 3.0 использует сигнальную скорость 8 ГТ/с, что даёт пропускную способность 1 Гбайт/с на линию. Таким образом, основной слот для видеокарты получит пропускную способность до 16 Гбайт/с.

На первый взгляд увеличение сигнальной скорости с 5 ГТ/с до 8 ГТ/с не кажется удвоением. Однако стандарт PCI Express 2.0 использует схему кодирования 8B/10B.

PCI Express 3.0 переходит на намного более эффективную схему кодирования 128B/130B, устраняя 20% избыточность. Поэтому 8 ГТ/с – это уже не "теоретическая" скорость; это фактическая скорость, сравнимая по производительности с сигнальной скоростью 10 ГТ/с, если бы использовался принцип кодирования 8b/10b.


1.2 HyperTransport

Шина HyperTransport (HT)- это двунаправленная последовательно-параллельная компьютерная шина с высокой пропускной способностью и малыми задержками.

HyperTransport работает на частотах от 200 МГц до 3,2 ГГц (у шины PCI - 33 и 66 МГц). Кроме того, она использует DDR, что означает, что данные посылаются как по переднему, так и по заднему фронтам сигнала синхронизации, что позволяет осуществлять до 5200 миллионов посылок в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.

Шина HyperTransport основана на передаче пакетов. Каждый пакет состоит из 32-разрядных слов, вне зависимости от физической ширины шины (количества информационных линий). Первое слово в пакете - всегда управляющее слово. Если пакет содержит адрес, то последние 8 бит управляющего слова сцеплены со следующим 32-битным словом, в результате образуя 40-битный адрес. Шина поддерживает 64-разрядную адресацию - в этом случае пакет начинается со специального 32 разрядного управляющего слова, указывающего на 64 разрядную адресацию, и содержащего разряды адреса с 40 по 63 (разряды адреса нумеруются начиная с 0). Остальные 32-битные слова пакета содержат непосредственно передаваемые данные. Данные всегда передаются 32-битными словами, вне зависимости от их реальной длины (например, в ответ на запрос на чтение одного байта по шине будет передан пакет, содержащий 32 бита данных и флагом-признаком того, что значимыми из этих 32 бит являются только 8).

Пакеты HyperTransport передаются по шине последовательно. Увеличение пропускной способности влечёт за собой увеличение ширины шины. HyperTransport может использоваться для передачи служебных сообщений системы, для передачи прерываний, для конфигурирования устройств, подключённых к шине и для передачи данных.

Шина HyperTransport нашла широкое применение в качестве процессорной шины. Она имеет оригинальную топологию (Рис.1) на основе линков, тоннелей, цепей и мостов, что позволяет этой архитектуре легко масштабироваться. HyperTransport призвана упростить внутрисистемные сообщения посредством замены существующего физического уровня передачи существующих шин и мостов, а также снизить количество узких мест и задержек. При всех этих достоинствах HyperTransport характеризуется также малым числом выводов (low pin counts) и низкой стоимостью внедрения. HyperTransport поддерживает автоматическое определение ширины шины, допуская ширину от 2 до 32 бит в каждом направлении (Таблица 2), кроме того, она позволяет передавать асимметричные потоки данных к периферийным устройствам и от них.

Основным компонентом каждого ПК является материнская (системная) плата. На ней размещены все его основные элементы – процессор, оперативная память, видеокарта, контроллеры, а также слоты и разъёмы для подключения внешних периферийных устройств. Все компоненты материнской платы связаны между собой системой проводников (линий), по которым происходит обмен информацией. Эту совокупность линий называют информационной шиной. Шина, связывающая только два устройства, называется портом . В качестве примера, рассмотрим структуру, например, такой шины ПК:

Взаимодействие между компонентами и устройствами ПК, подключенными к разным шинам, осуществляется с помощью, так называемых мостов, реализованных на одной из микросхем Chipset.

Шины в ПК различаются по своему функциональному назначению:

- системная шина используется микросхемами Chipset для пересылки информации к процессору и обратно;

- шина кэш-памяти предназначена для обмена информацией между процессором и внешней кэш-памятью;

- шина памяти используется для обмена информацией между оперативной памятью и процессором;

- шины ввода-вывода используются для обмена информацией с периферийными устройствами.

Шины ввода-вывода подразделяются на локальные и стандартные. Локальная шина ввода-вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами и др.) и процессором. В настоящее время в качестве локальной шины используется шина PCI Express (в прошлом использовалась шина AGP – Accelerated Graphics Port).

Стандартная шина ввода-вывода используется для подключения более медленных устройств (например, мыши, клавиатуры, модемов). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время широко используется шина USB.

Компоненты шины

Архитектура любой шины имеет следующие компоненты:

- линии для обмена данными (шина данных). Шина данных обеспечивает обмен данными между процессором, картами расширения, установленными в слоты и памятью. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором семейства Pentium имеют 64-разрядную шину данных.

- линии для адресации данных (шина адреса). Шина адреса служит для указания адреса какого-либо устройства, с которым процессор производит обмен данными. Каждый компонент ПК, каждый порт ввода-вывода и ячейка RAM имеют свой адрес.

- линии управления данными (шина управления). По шине управления передается ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждение приема данных, аппаратного прерывания, управления и других. Все сигналы шины управления предназначены для обеспечения передачи данных.

- контроллер шины , осуществляет управление процессом обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы, либо в виде совместимого набора микросхем – Chipset.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в неё. Первая шина ISA для IBM PC была 8-разрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины для современных ПК, например, Pentium IV – 64 – разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду. Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность. Например, если разрядность шины 64, а тактовая частота 66 МГц, то пропускная способность = 8 (байт) * 66 МГц = 528 Мбайт/сек.

Частота шины - это тактовая частота, с которой происходит обмен данными по шине.

Внешние устройства подключаются к шинам посредством интерфейса.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры.

Системная шина (FSB – Front Side Bus) это шина предназначена для обмена информацией между процессором, памятью и другими устройствами, входящими в систему. К системным шинам относятся GTL , имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц; EV6 , спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Шины ввода/вывода совершенствуются в соответствии с развитием периферийных устройств ПК.

- Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. Вначале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключать дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM, DVD-ROM – к шине IEEE 1394.

- Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

- Шина VESA или VLB , предназначена для связи процессора с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными. Во времена преобладания на компьютерном рынке процессора CPU 80486, шина VLB была достаточно популярна, однако в настоящее время ее вытеснила более производительная шина PCI.

- Шина РСI (Peripheral Component Interconnect bus – взаимосвязь периферийных компонентов) была разработана фирмой Intel для процессора Pentium. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия процессора). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

- Шина AGP - высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер с системной памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот. Если в стандартном варианте 32-разрядная шина PCI имеет тактовую частоту 33 МГц, что обеспечивает теоретическую пропускную способность PCI 33 х 32= 1056 Мбит/с = 132 Мбайт/с, то шина AGP тактируется сигналом с частотой 66 МГц, поэтому ее пропускная способность в режиме 1х составляет, 66 х 32 = 264 Мбайт/сек; в режиме 2х эквивалентная тактовая частота составляет 132 МГц, а пропускная способность - 528 Мбайт/сек.; в режиме 4х пропускная способность около 1 Гбайт/сек.

- PCI Express – В 2004 году компанией Intel была разработана последовательная шина PCI-Express с пропускной способностью около 4 Гб/сек. Каждому устройству, подключенному к этой шине отводится собственный канал со скоростным показателем 250Мб/сек. При этом можно использовать сразу несколько каналов, например, при передаче данных к видеокарте. Также к плюсам данной шины можно отнести "горячую замену" любого подключенного к ней устройства, даже не выключая питания системного блока. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и PCI, ожидается, что PCI Express заменит эти шины в персональных компьютерах.

- Шина USB (Universal Serial Bus) была разработана для подключения среднескоростных и низкоскоростных периферийных устройств. Например, скорость обмена информацией по шине USB 2.0 составляет 45 Мбайт/с – 60 Мбайт/сек. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Шина USB поддерживает технологию Plug & Play. При подсоединении периферийного устройства его конфигурирование осуществляется автоматически.

- Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Существует широкий диапазон версий SCSI, начиная от первой версии SCSI I, обеспечивающей максимальную пропускную способность 5 Мбайт/с, и до версии Ultra 320 с максимальной пропускной способностью 320 Мбайт/сек.

- Шина UDMA (Ultra Direct Memory Access – прямое подключение к памяти). UDMA обеспечивает передачу данных с жесткого диска, со скоростью до 33,3 Мб/сек в режиме 2 и 66,7 Мб/сек в режиме 4.

- Шина IEEE 1394 - это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбит/сек, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI. Как и USB, шина IEEE 1394 полностью поддерживает технологию Plug & Play, включая возможность установки компонентов без отключения питания ПК. Подключать к компьютеру через интерфейс IEEE 1394 можно практически любые устройства, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства записи на магнитную ленту и многие другие периферийные устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой.

Последовательный и параллельный порты

Такие устройства ввода и вывода, как клавиатура, мышь, монитор и принтер, входят в стандартную комплектацию ПК. Все периферийные устройства ввода должны коммутироваться с ПК таким образом, чтобы данные, вводимые пользователем, могли не только корректно поступать в компьютер, но и в дальнейшем эффективно обрабатываться. Для обмена данными и связи между периферией (устройствами ввода/вывода) и модулем обработки данных (материнской платой) может быть организована параллельная или последовательная передача данных.

Параллельный порт. В ПК, как правило, 2 параллельных порта: LPT1 и LPT2 . К ним можно подключать принтеры и сканеры. В настоящее время LPT порты используются редко, современные принтеры и сканеры в основном подключаются к универсальным USB портам.

Последовательные порты. В ПК, как правило, 4 последовательных порта: COM1 COM4 . Это устаревшие порты, они редко используются в современных ПК. К ним можно подключать: мышь старой конструкции (с механическим шариком) и некоторые другие медленные устройства.

PS/2 – порт для подключения клавиатуры и мыши, получивший в своё время широкое рас­про­стра­не­ние и до сих пор имеющийся во многих современных компьютерах.

Универсальный USBпорт . К USB-портам подключаются разнообразные устройства, от принтеров и сканеров до флэш-накопителей и внешних дисков, а также видеокамеры и веб-камеры, фотоаппараты, телефоны, музыкальные плейеры и пр.

Слоты ПК

Для того, чтобы системная плата могла взаимодействовать с другими, отдельно вставляющимся платами, используются специальные гнезда, которые называются слотами.

Слоты стандарта PCI . PCI – это стандарт не только слота, но и самой шины (канал, по которому передается информация между устройствами компьютера). Уже долгое время слоты PCI служат для подключения внешних устройств (звуковая плата, сетевая карта и др. контроллеры). Слотов PCI на современных платах три, четыре. Найти их очень легко – они самые короткие и обычно белого цвета, разделенные перемычкой на две неравные части. Сегодня слоты PCI сочетаются с новыми слотами PCI-Express (используются для подключения видеокарт).

Слоты стандарта PCI Express. PCI-Express имеет два типа слотов для подключения дополнительных плат:

Короткие PCI-Express x1 (скорость передачи данных – 250 Мб/с)

Длинные PCI-Express x16 (до 4 Гб/с) – для подсоединения видеокарты.

Слоты для установки оперативной памяти – их легко различить среди всех разъемов, они снабжены специальными замочками-защелками. На плате их может быть от двух до четырех, что позволяет установить от 512 Мб до 4 Гб оперативной памяти. Слоты жестко привязаны к типу оперативной памяти, т.е. в слот, предназначенный для памяти DDR2 нельзя вставить память типа DDR3. Иногда на одной системной плате бывает установлено несколько слотов для разных типов памяти.

Шиной (Bus ) называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК. Шины предназначены для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом . На рис. 1 дана структура шины.

Шина имеет места для подключения внешних устройств – слоты , которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

Рис. 1. Структура шины

Шины в ПК различаются по своему функциональному назначению :

  • системная шина (или шина CPU) используется микросхемами Cipset для пересылки информации к и обратно (см. также рис. 1);
  • шина предназначена для обмена информацией между CPU и кэш-памятью (см. также рис. 1);
  • шина памяти используется для обмена информацией между оперативной памятью RAM и CPU;
  • шины ввода/вывода информации подразделяются на стандартные и локальные.

Локальная шина ввода/вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами, картами сканера и др.) и системной шиной под управлением CPU. В настоящее время в качестве локальной шины используется шина PCI. Для ускорения ввода/вывода видеоданных и повышения производительности ПК при обработке трехмерных изображений корпорацией Intel была разработана шина AGP (Accelerated Graphics Port ).

Стандартная шина ввода/вывода используется для подключения к перечисленным выше шинам более медленных устройств (например, мыши, клавиатуры, модемов, старых звуковых карт). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время – шина USB.

Шина имеет собственную архитектуру, позволяющую реализовывать важнейшие ее свойства – возможность параллельного подключения практически неограниченного числа внешних устройств и обеспечение обмена информацией между ними. Архитектура любой шины имеет следующие компоненты:

  • линии для обмена данными (шина данных);
  • линии для адресации данных (шина адреса);
  • линии управления данными (шина управления);
  • контролер шины.

Контроллер шины осуществляет управление процессором обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо в виде совместимого набора микросхем – Chipset.

Шина данных обеспечивает обмен данными между CPU, картами расширения, установленными в слоты, и памятью RAM. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором 80286 имеют 16-разрядную шину данных, с CPU 80386 и 80486 – 32-разрядную, а компьютеры с CPU семейства Pentium – 64-разрядную шину данных.

Читайте нашу лекцию!

Шина адреса служит для указания адреса к какому-либо устройству ПК, с которым CPU производит обмен данными. Каждый компонент ПК, каждый регистр ввода/вывода и ячейка RAM имеют свой адрес и входят в общее адресное пространство ПК. По шине адреса передается идентификационный код (адрес ) отправителя и (или) получателя данных.

Для ускорения обмена данными используется устройство промежуточного хранения данных – оперативная память RAM . При этом решающую роль играет объем данных, которые могут временно храниться в ней. Объем зависит от разрядности адресной шины (числа линий) и тем самым от максимально возможного числа адресов, генерируемых процессором на адресной шине, т.е. от количества ячеек RAM, которым может быть присвоен адрес. Количество ячеек RAM не должно превышать 2 n , где n – разрядность адресной шины. В противном случае часть ячеек не будет использоваться, поскольку процессор не сможет адресоваться к ним.

В двоичной системе счисления максимально адресуемый объем памяти равен 2 n , где n – число линий шины адреса.

Процессор 8088, например, имел 20 адресных линий и мог, таким образом, адресовать память объемом 1 Мбайт (2 20 =1 048 576 байт=1024 Кбайт). В ПК с процессором 80286 разрядность адресной шины была увеличена до 24 бит, а процессоры 80486, Pentium, Pentium MMX и Pentium II имеют уже 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гбайт памяти.

Шина управления передает ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждения приема данных, аппаратного прерывания, управления и других, чтобы обеспечить передачу данных.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины современных ПК, например, Pentium IV – 64-разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2 х) или четыре (режим 4 х) раза, что эквивалентно увеличению тактовой частоты шины в соответствующее число раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключается посредством интерфейса (Interface – сопряжение), представляющего собой совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором.

К числу таких характеристик относятся электрические и временные параметры, набор управляющих сигналов, протокол обмена данными и конструктивные особенности подключения. Обмен данными между компонентами ПК возможен, только если интерфейсы этих компоненты совместимы.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры. Кроме того, гибкость и унификация системы достигаются за счет введения промежуточных стандартных интерфейсов, таких как интерфейсы необходимы для работы наиболее важных периферийных устройств ввода и вывода.

Системная шина предназначена для обмена информацией между CPU, памятью и другими устройствами, входящими в систему. К системным шинам относятся:

  • GTL, имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц;
  • EV6, спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Шины совершенствуются в соответствии с развитием периферийных устройств ПК. В табл. 2 представлены характеристики некоторых шин ввода/вывода.

Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. В начале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключить дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM – к шине IEEE 1394. Однако наличие огромного парка ПК с шиной ISA будет востребована еще на протяжении некоторого времени.

Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

Таблица 2 . Характеристики шин ввода/вывода

Шина Разрядность, бит Тактовая частота, МГц Пропускная способность, Мбайт/с
ISA 8-разрядная 08 8,33 0008,33
ISA 16-разрядная 16 8,33 0016,6
EISA 32 8,33 0033,3
VLB 32 33 0132,3
PCI 32 33 0132,3
PCI 2.1 64-разрядная 64 66 0528,3
AGP (1 x) 32 66 0262,6
AGP (2 x) 32 66х2 0528,3
AGP (4 x) 32 66х2 1056,6

Шина VESA , или VLB , предназначена для связи CPU с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными.

Шина PCI была разработана фирмой Intel для процессора Pentium и представляет собой совершено новую шину. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных

материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

Шина AGP – высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (3D-акселератор) с системой памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот.

Шина USB была разработана лидерами компьютерной и телекоммуникационной промышленности Compaq, DEC, IBM, Intel, Microsoft для подключения периферийных устройств вне корпуса PC. Скорость обмена информацией по шине USB составляет 12 Мбит/с или 15 Мбайт/с. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Все периферийные устройства должны быть оборудованы разъемами USB и подключаться к ПК через отдельный выносной блок, называемый USB-хабом , или концентратором , с помощью которого к ПК можно подключить до 127 периферийных устройств. Архитектура шины USB представлена на рис. 4.

Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф. С шинами PC (ISA или PCI) шина SCSI связана через хост-адаптер (Host Adapter ). Каждое устройство, подключенное к шине SCSI, может инициировать обмен с другими устройством.

Шина IEEE 1394 это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между

ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбайт/с, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI.

Подключить к компьютеру через интерфейс IEEE 1394 можно практически любые устройств, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой. В настоящее время уже выпускаются адаптеры IEEE 1394 для шины PCI.

4 / 5 ( 4 votes )

Помогая проекту BEST-EXAM, вы делаете образование более доступным для каждого человека, внесите и вы свой вклад -
поделитесь этой статьей в социальных сетях!