WikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 46 человек(а).

Компьютерный блок питания (далее БП/PSU) стоит около 30 долларов, а лабораторный источник питания может обойтись Вам в 100 долларов или даже больше! Доработав дешевый, а зачастую и бесплатный ATX БП, которые можно найти в любом ненужном компьютере, Вы можете сами сделать хороший лабораторный БП с хорошей мощностью, защитой от короткого замыкания и стабилизированным выходом на 5V. На большинстве БП другие выходы не стабилизированы.

Шаги

    Возьмите БП ATX или отсоедините его от неработающего компьютера.

    Отсоедините кабель от блока питания и выключите переключатель на задней панели (если таковой имеется). Кроме того, убедитесь, что Вы не заземлены и оставшийся ток не пройдет через Вас.

    Удалите винты, которые крепят БП к корпусу компьютера и вытащите его.

    Отрежьте разъемы (оставьте несколько сантиметров провода на разъемах, чтобы можно было использовать их в дальнейшем для чего-нибудь еще).

    Разрядите блок питания, оставив его отсоединенным на несколько дней. Некоторые подключают резистор (10 Ом) между черным и красным проводом (шнур питания на внешней стороне), однако это гарантирует сброс только низкого напряжения – которое и так не представляет опасности! Но могут остаться заряженными высоковольтные конденсаторы, которые при сохранении тока могут быть потенциально опасными или даже привести летальному исходу.

    Соберите необходимые детали: винтовые клеммы (клеммы), светодиод (LED) с токоограничивающим резистором 330 Ом, выключатель (по желанию), резистор 10 Ом мощностью 10 Вт или больше (см. в разделе Советы), и изолирующую термоусадочную трубку.

    Откройте БП, вывернув винты, соединяющие верхнюю и нижнюю часть корпуса.

    Разделите провода по цветам. Если у вас есть провода, не перечисленные здесь (коричневый и т.д.), см. раздел "Советы". Цветовой код для проводов: красный = +5V, Черный = земля (0V), белый = -5V, желтый = +12V, синий = -12V, Оранжевый = +3.3V, Фиолетовый = +5V запас (не используется), Серый = PG (выход) и зеленый = ON (необходимо замкнуть с (0V), чтобы включить БП).

    Просверлите отверстия в свободном месте корпуса БП. Сначала наметьте центры отверстий гвоздем при помощи молотка, просверлите отверстия сверлом или дремелем, потом увеличивайте отверстия разверткой, пока они не будут подходить по размеру для соединительных клемм. Кроме того, просверлите отверстия для выключателя и светодиода (опция).

    Вставьте клеммы в соответствующие отверстия и прикрепите гайками сзади.

    Сделайте все необходимые соединения.

    • Подключите один из красных проводов к нагрузочному резистору, все остальные красные провода к красной клемме;
    • Подключите один из черных проводов к другому выводу нагрузочного резистора, второй черный провод к катоду светодиода (короткая ножка), третий черный провод к переключателю DC-ОN, все остальные черные провода в клемму черного цвета;
    • Подключите белый провод к клемме -5V, желтый к клемме +12V, синий к клемме -12V, серый к резистору (330 Ом), а второй вывод резистора припаяйте к аноду светодиода (более длинной его ножке);
    • Обратите внимание, что некоторые БП могут иметь или серый или коричневый провод в качестве "Power Good" / "Power OK". (Большинство БП имеют меньший оранжевый провод, который используется для определения +3,3 В, и этот провод обычно соединен в разъеме с другим оранжевым проводом. Убедитесь, что этот провод подключен к другим оранжевым проводам, иначе Ваш БП не заработает). Этот провод должен быть подключен либо к оранжевым проводам (+3,3 В), либо к красным (+5 В) для функционирования системы. Если вы сомневаетесь, попробуйте вначале низкое напряжение (+3,3 В). Если блок питания не ATX или AT, он может иметь свою собственную цветовую схему. Если Ваша схема отличается от приведенной здесь на фотографии, следуйте согласно обозначениям, а не цветовой характеристике.
    • Подключите зеленый провод к другому выходу выключателя.
    • Убедитесь, что на все оголенные концы надета изолирующая термоусадка.
    • Скрепите провода стяжками или изолентой, лучше по цветовому признаку.
  1. Проверьте надежность соединений, осторожно потянув за провода. Найдите неизолированные провода и изолируйте их, чтобы предотвратить замыкание. Используйте супер-клей, чтобы зафиксировать светодиод в отверстии. Установите на место крышку.

  2. Подключите кабель к разъему на задней части БП и включите в розетку. Включите главный выключатель на БП, если Вы его установили. Проверьте, загорелся ли индикатор. Проверить работу БП можно, подсоединяя лампочку 12 В к разным выходам; также можно проверить с помощью вольтметра. Убедитесь в том, что нет замыкания какого-либо провода. Приведите внешне корпус БП в порядок.

    • Вы можете использовать 12В выход источника питания для зарядки автомобильного аккумулятора! Будьте осторожны: если аккумулятор сильно разряжен, то сработает защита источника питания от короткого замыкания. В этом случае для защиты от перегрузки можно последовательно с выходом 12 В подключить нагрузочный резистор 10 Ом, 10/20 Вт. Как только напряжение на батарее станет близким к 12 В (можно проверять тестером), Вы можете убрать резистор и продолжить зарядку батареи. Это устройство поможет Вам, если аккумулятор старый, или он «сел» из-за попыток завести машину зимой, или Вы случайно оставили включенными на долгое время фары или магнитолу, или по какой-то другой причине.
    • Также Вы можете переделать блок в источник питания для других целей - но это уже другая статья.
    • Если Вам не нужны все девять припаянных проводов к клемме (как в случае с заземленными проводами) Вы можете отрезать их на PCB. 1-3 проводов будет достаточно. Это означает, что нужно также отрезать все провода, которые Вы не собираетесь использовать.
    • Если у Вас есть сигнальный провод для 3,3 В, соединенный с выводом 3,3 В, то не получится использовать 3,3 В напряжение в качестве понижающего, например, с 12 В до 8,7 В. Вольтметр будет показывать 8,7 В, но при подключении нагрузки к 8,7 В может сработать защита источника питания и отключить всю цепь.
    • В некоторых источниках питания для правильной работы необходимо соединить серый и зеленый провода.
    • Вы можете добавить еще выход 3,3 В (например, для питания 3-вольтовых устройств), присоединив оранжевый провод к клемме (убедитесь, что коричневый провод остается подключенным к оранжевому). Учтите, что они делят мощность с выходом 5В, поэтому подключенная нагрузка не должна превышать общую выходную мощность этих двух выходов.
    • Опции: Отдельный (дополнительный) выключатель не обязателен, достаточно просто подключить зеленый провод к черному. Блок питания будет включаться задним переключателем, если он есть. Светодиод также не обязателен, можно просто обрезать и изолировать серый провод.
    • Если вы не хотите или не умеете паять / присоединять много проводов к соединительным клеммам (например, провода заземления), вы можете отрезать их у платы. Достаточно оставить 1-3 провода. Обрежьте также все провода, которые не планируете использовать.
    • Вы можете установить автомобильный прикуриватель в отверстие от шнура питания. Так Вы сможете подключать автооборудование к источнику питания.
    • Если Вы не уверены в исправности источника питания, проверьте его сначала на компьютере, прежде чем переделывать. Компьютер включился? Вентилятор БП запустился? Вы можете подключить провода вольтметра к дополнительному разъему (дисковода). Вольтметр должен показывать значение, близкое к 5 В (между красным и черным проводами). Блок питания может не запускаться из-за отсутствия нагрузки на выходе или выход запуска (зеленый провод) может быть не замкнут на массу.
    • Линия +5V обеспечивает питание +5V в дежурном режиме (для работы кнопки включения на материнской плате, Wake-on-LAN и т.д.). Она обычно дает ток до 500-1000 мА, даже когда основные выходы отключены. Может использовать для питания светодиода, показывающего наличие сетевого напряжения.
    • От этого источника можно получить напряжения 5 В (+5, ноль), 7 В (+12, +5), 10 В (+5, -5), 12 В (+12, ноль), 17 В (+5, -12) и 24 В (+12, -12), этого должно быть достаточно для большинства задач. Многие ATX с 24-контактным разъемом для материнской платы не имеют вывода - 5 В. Если Вам нужен выход -5 В, поищите блок ATX с 20-контактным разъемом, 20+4 -контактным разъемом или AT.
    • После доработки блока почистите его и приведите в порядок.
    • Вентилятор блока питания может быть довольно громким, ведь он предназначен для охлаждения достаточно нагруженного БП и компонентов компьютера. Конечно, можно отключить вентилятор вообще, но это плохая идея. Если хотите, чтобы все было нормально, то перережьте красный провод, идущий к вентилятору (12 В) и соедините его с красным проводом, идущим из PS (5 В). Теперь вентилятор будет вращаться значительно медленнее и тише, все же обеспечивая некоторое охлаждение. Если же Вам нужна большая сила тока, то лучше этого не делать (не снижать обороты вентилятора). Если же Вы все же решили это сделать, то это под Вашу ответственность; единственное, что можно пожелать в этом случае - следите за тем, как быстро блок нагревается. Вы также можете заменить штатный (заводской) вентилятор на более тихую модель (возможно, понадобится пайка).
    • Чтобы иметь больше места внутри блока, Вы можете смонтировать вентилятор на внешней стороне корпуса.
    • Вы можете просверлить отверстие немного больше.
    • У некоторых новых БП есть «чувствительные к напряжению» провода, которые должны быть подключены к проводам с соответствующим напряжением для нормальной работы. В главном жгуте (с 20 проводами) должно быть четыре красных провода и три оранжевых. Если оранжевых провода только два или меньше, нужно присоединить к ним коричневый провод. Если у Вас есть только три красных провода, к ним нужно присоединить другой провод (иногда розовый).
    • Если Вы не боитесь паять, то можете заменить нагрузочный 10 W резистор на вентилятор. Проверьте полярность - соединяйте красные и черные провода соответственно.
    • Выход -5 В был удален из спецификации ATX, и теперь его нет ни одном блоке ATX.
    • Если источник питания не работает, не горит светодиод, посмотрите, вращается ли вентилятор. Если вентилятор в блоке питания работает, то скорее всего светодиод подключен неправильно (перепутаны положительный и отрицательный выводы светодиода). Откройте корпус блока питания и поменяйте местами фиолетовый и серый провода (убедитесь, светодиод не шунтирован).
    • Блок питания ATX - это импульсный источник питания (подробнее на https://ru.wikipedia.org/wiki/Импульсный_стабилизатор_напряжения), для правильной работы ему нужна некоторая нагрузка. Для этого используем нагрузочный резистор, на котором будет выделять тепло. Для хорошего охлаждения резистор нужно закрепить на металлической стене корпуса блока (также можно использовать отдельный радиатор, убедившись, он ничего не замкнет). Если к источнику питания, всегда, когда он включен, будет подключена какая-то нагрузка, то можно обойтись без резистора. Можно также использовать в качестве нагрузки выключатель с подсветкой на 12 В, который будет выступать в качестве необходимой для включения питания нагрузки.
    • Для использования с приборами с высокой стартовой нагрузкой (например, 12 В холодильник с конденсатором) подключите подходящий 12 В аккумулятор для предупреждения автоматического отключения блока питания.

    Предупреждения

    • Не прикасайтесь к проводам/дорожкам, ведущим к конденсаторам. Конденсаторы – это цилиндрические детали, покрытые тонкой пленкой, с открытым металлом в верхней части и с обозначением «+» или «K». Твердотельные конденсаторы короче, немного толще и без пленочной оболочки. Они сохраняют заряд так же, как батареи, но в отличие от батарей они могут разряжаться очень быстро. Даже если Вы разрядили блок, старайтесь не касаться руками платы, за исключением тех мест, где это необходимо. Заземляйте (разряжайте на массу) всего, к чему будете прикасаться.
    • Убедитесь, что конденсаторы разряжены. Подключите кабель питания, включите блок (замкните зеленый провод на массу), затем отключите кабель питания и подождите, пока вентилятор не перестанет вращаться.
    • Если Вы подозреваете, что источник питания неисправен, не используйте его! Если он неисправен, то схема защиты может не сработать. Как правило, схема защиты постепенно разряжает конденсаторы высокого напряжения. Но если (например) блок рассчитан на 110 В, а был подключен к 240 В, то схема защиты, скорее всего, выйдет из строя. В таком случае блок питания, скорее всего, не отключится при перегрузке или неисправности.
    • Просверливая металлический корпус, следите, чтобы металлическая стружка не попала внутрь блока питания. Это может привести к замыканию, которое в свою очередь может привести к возгоранию, перегреву или высоковольтным импульсам на выходе, что может повредить ваш новый источник питания, на который Вы потратили так много сил.
    • Высокое напряжение опасно и может даже привести к летальному исходу (все, что выше 30 миллиампер/вольт, может привести к летальному исходу за считанные секунды, если вы коснетесь оголенных проводов руками), как минимум Вы получите болевой шок. Прежде чем работать над блоком питания, убедитесь, что кабель питания отсоединен и конденсаторы разряжены, как описано выше. При сомнениях используйте мультиметр.
    • Не снимайте плату, пока нет необходимости. Токоведущие дорожки и пайка могут оставаться под высоким напряжением, если Вы не оставили БП на некоторое время для разрядки. Если все же нужно снять плату, вольтметром проверьте напряжение на больших конденсаторах. Когда будете устанавливать плату на место, проверьте, чтобы под ней была пластиковая прокладка.
    • Компьютерный источник питания отлично подходит для тестирования или для питания простой электроники (например, зарядные устройство, паяльники и проч.), но никогда не сравнится с хорошим лабораторным блоком питания. Если Вы собираетесь использовать блок питания не только для тестирования, купите хороший лабораторный блок питания. Они не зря стоят так дорого, тому есть причины.
    • Получившийся источник питания обеспечивает высокую выходную мощность. Возможные ошибки в соединениях могут привести к появлению искрения или электрической дуги на выходах с низким напряжением или сжечь схему, с которой Вы работаете. Поэтому лабораторные блоки питания имеют регулируемые ограничители тока.
    • В оригинальной статье говорится, что нужно обязательно заземлиться. Это неправильно и опасно. Убедитесь, что Вы НЕ заземлены при работе с источником питания, чтобы ток не прошел через Вас.
    • Такая переделка однозначно лишит Вас гарантии на блок, если он есть.
    • Только люди, хорошо знающие работу БП могут заниматься его созданием.

Обычно для переделки компьютерных блоков питания используют блоки ATX, собранные на микросхемах TL494 (KA7500), но в последнее время такие блоки не попадаются. Их стали собирать на более специализированных микросхемах, на которых сложнее сделать регулировку тока и напряжения с нуля. По этой причине был взят для доработки старый блок типа AT на 200W, который был в наличии.

Этапы переделки

1. Вмонтирована плата зарядного устройства от мобильного телефона Nokia AC-12E с доработкой. В принципе можно использовать и другие зарядные устройства.


Доработка заключалась в перемотке III обмотки трансформатора и установке дополнительного диода и конденсатора. После переделки блок стал выдавать напряжения +8V для питания вентилятора и вольтметра-амперметра и +20V для питания микросхемы управления TL494N.


2. С платы блока AT выпаяны детали самозапуска первичной цепи и цепи регулировки выходного напряжения. Также были удалены все вторичные выпрямители.


Выходной выпрямитель переделан по мостовой схеме. Использованы три диодных сборки MBR20100CT. Дроссель перемотан - диаметр кольца 27 мм, 50 витков в 2 провода ПЭЛ 1 мм. В качестве нелинейной нагрузки применена лампа накаливания 26V 0,12A. С ней напряжение и ток хорошо регулируются от нуля.
Для обеспечения устойчивой работы микросхемы изменены цепи коррекции. Для грубой и точной регулировок напряжения и тока применено особое подключение потенциометров. Такое подключение позволяет плавно изменять напряжение и ток в любом месте при любом положении потенциометра грубой регулировки.

Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией для устранения самовозбуждения в цепях управления.
Верхний предел установки напряжения подбираются резисторами R38, R39 и R40. Верхний предел установки тока подбирается резистором R13.


3. Для измерения тока и напряжения применен вольтметр-амперметр


За основу взята схема «Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)» от Eddy71 .
В схему введена регулировка баланса ОУ при измерении тока, что позволило резко улучшить линейность. На схеме это потенциометр «Баланс ОУ», напряжение с которого поступает на прямой или инверсный входы (подбирается, куда подключить, на схеме обозначено зелеными линиями).
Автоматический выбор диапазона измерения реализован программно. Первый диапазон до 9,99A с указанием сотых долей, второй до 12A с указанием десятых долей ампера.


4. Программа для микроконтроллера написана на СИ (mikroC PRO for PIC)и снабжена комментариями.

Конструкция и детали

Конструктивно все элементы размещены в корпусе блока AT. Плата зарядного устройства закреплена на радиаторе с силовыми транзисторами. Сетевые разъемы убраны и на их месте установлен выключатель и выходные зажимы. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки.

Чертежи выполнены в программе Frontplatten-Designer 1.0. Междукаскадный трансформатор блока AT не переделывается. Выходной трансформатор блока AT тоже не переделывается, просто средний отвод, выходящий из катушки, отпаивается от платы и изолируется. Выпрямительные диоды заменены на новые, указанные в схеме.
Шунт взят от неисправного тестера и закреплен на изоляционных стойках на радиаторе с диодами. Плата для вольтметра-амперметра использована от «Суперпростого амперметра и вольтметра на супердоступных деталях (автовыбор диапазона)» от Eddy71 с последующей доработкой (перерезаны дорожки, согласно схемы).

Замеченные особенности недостатки

В качестве базового блока использован блок AT 200 W. К сожалению, он имеет довольно маленький радиатор для силовых транзисторов. При этом вентилятор подключен к напряжению 8 Вольт (для уменьшения создаваемого шума), поэтому токи больше 6 – 7 Ампер, снимать можно только кратковременно, во избежание перегрева транзисторов.

Файлы

Файлы схем, плат, чертежей и исходники и прошивка
🕗 10/01/13 ⚖️ 70,3 Kb ⇣ 521

В статье вы узнаете о том, как изготовить лабораторный блок питания самостоятельно из того, что имеется под рукой. На сегодняшний день существует довольно много устройств, которым необходимо различное питание - и 5, и 3, и 12 вольт. А некоторые и вовсе питаются током высокой частоты (об этих устройствах будет рассказано отдельно). Но начать стоит с классической схемы - на трансформаторе. Конечно, конструкция получится громоздкой, и схема устаревшая, но надежность высокая.

Трансформатор блока питания

Для лабораторного блока питания необходимо использовать трансформаторы типа ТС-270 (двухкатушечные, от старых ламповых цветных телевизоров). Но их придется слегка модернизировать. Первичные обмотки остаются на своих местах, вторичные удаляются полностью. Так делается лабораторный блок питания, схема которого приведена в статье. Наматываются новые обмотки, исходя из существующих потребностей. Самый простой вариант - сделать ступенчатое регулирование напряжения на выходе. Для этого нужно посчитать, сколько витков необходимо для снятия одного Вольта:

  1. Наматываете 10 витков провода вместо вторичной обмотки.
  2. Включаете трансформатор и проводите замер напряжения на вторичной обмотке.
  3. Допустим, получилось 2 В. Следовательно, 5 витков выдают 1 В.
  4. Чтобы сделать «ступени» в 1 В, нужно делать отводы каждые пять витков.

Такая конструкция окажется массивной, да и придется использовать либо несколько гнезд, либо специальный тумблер для переключения режимов работы. Намного проще окажется произвести намотку вторичной обмотки с таким расчетом, чтобы на выходе оказалось примерно 30 вольт переменного напряжения.

Регулировка напряжения

Выше был приведен пример ступенчатой регулировки. Но лабораторный блок питания, схема которого приведена в статье, имеет одно большое преимущество - в нем вторичная обмотка цельная, без отводов. Регулировка производится при помощи специальной схемы на полупроводниковых элементах. При помощи переменного резистора изменяются параметры перехода полупроводника. Вследствие этого происходит изменение параметров схемы и выходного напряжения.

Дело в том, что у вас получается регулируемый лабораторный блок питания. И чтобы производить контроль напряжения на выходе, вам потребуется подключить к нему вольтметр. Проще всего использовать стрелочный, главное, чтобы шкала была правильно проградуирована. Но можно немного потратиться и приобрести цифровой вольтметр (цена его составляет около ста рублей), у которого диапазон измерений находится в промежутке 0...30 вольт. С ним будет намного проще работать, ведь вы всегда будете видеть значение напряжения на выходе вашего блока питания.

Блок питания компьютера

Если уж сказать прямо, то это идеальное устройство. Из него можно сделать любой источник постоянного напряжения. Правда, не все знают, как запустить его без материнской платы. Сделать это очень просто - в жгуте проводов ищете один зеленый и соединяете его с любым черным. Вот и все, можно видеть, как закрутились вентиляторы. Теперь подробнее о том, как сделать лабораторный блок питания из компьютерного БП своими руками.

Напряжения в компьютерном БП

Дело в том, что можно в компьютерном блоке питания найти несколько типов напряжений:

  1. 3,3 В.
  2. 12 В.

Как вы понимаете, это наиболее «популярные» значения напряжений. Их достаточно для питания микросхем, контроллеров, исполнительных устройств. Обратите внимание на то, что даже сложный электронный механизм можно запитать от одного только блока питания компьютера. Лишь бы был приличный запас мощности.

Высокочастотные токи

Что самое главное - можно изготовить лабораторный блок питания из компьютерного БП с наличием высокочастотного тока на выходе. Для некоторых устройств, например инверторов подсветки ламп монитора, необходим именно ток ВЧ. Как вы знаете, компьютерный БП построен по инверторной схеме. Следовательно, где-то в нем можно найти напряжение 12 вольт с высокой частотой. Для этого необходимо сделать следующее:

  1. Разбираете корпус блока питания (предварительно отключите его от сети).
  2. Находите самый большой трансформатор. Это высокочастотный трансформатор, именно на нем и будет находиться ток высокой частоты.
  3. Два провода припаиваете к первичной обмотке и выводите из корпуса.

Теперь остается только все красиво оформить - сделать переднюю панель, установить нужное количество гнезд и подписать их, чтобы не запутаться. При изготовлении лабораторного источника питания из компьютерного БП вы получаете одно большое преимущество - напряжение на выходе всегда стабильно. Дополнительных схем стабилизации не требуется. И рассмотренный в самом начале лабораторный блок питания 0-30В оказывается намного хуже по параметрам, нежели из компьютерного БП.

Заключение

Можно спорить о преимуществах и недостатках различных схем, но наиболее качественным изделием окажется источник питания из компьютерного БП. Но у него есть недостаток - короткое замыкание на выходе приводит к переходу блока питания в режим защиты. По факту это полная остановка работы. Только лишь перезагрузка устройства вернет на выходе напряжение. А вот если лабораторный блок питания изготовлен по классической трансформаторной схеме, таких проблем вы сможете избежать - но продумать придется защиту от короткого замыкания (хотя бы предохранитель на 16 или 25 ампер на выходе устройства).

С чего начинается Родина... То есть я хотел сказать с чего начинается любое радиоэлектронное устройство, будь то сигнализация или ламповый усилитель - конечно с источника питания. И чем значительнее ток потребления девайса, тем мощнее требуется трансформатор в его БП. Но если приборы изготавливаем часто, то никаких запасов трансформаторов нам не хватит. А если ходить покупать на радиобазаре то учтите, что в последнее время стоимость такого трансформатора превысила все разумные пределы - за средний стоваттник требуют около 10уе!

Но выход всё-же есть. Это обычный, стандартный ATX от любого, даже самого простого и древнего компьютера. Несмотря на дешевизну таких БП (бэушный можно найти по фирмам и за 5уе), они обеспечивают очень приличный ток и универсальные напряжения. По линии +12В - 10А, по линии -12В - 1А, по линии 5В - 12А и по линии 3,3В - 15А. Конечно указанные значения не точные, и могут несколько отличаться в зависимости от конкретной модели БП ATX.


Вот как раз недавно я и делал одну интересную вещь - музыкальный центр из и корпуса от небольшой колонки. Всё бы хорошо, да вот учитывая приличную мощность усилителя НЧ, ток потребления центра в пиках басов достигал 8А. И даже попытка установить на питание 100 ваттный трансформатор с 4-х амперными вторичками нормального результата не дал: мало того, что на басах напряжение проваливалось на 3-4 вольта (что было хорошо заметно по затуханию ламп подсветки передней панели магнитолы), так ещё и от фона 50Гц никак не удавалось избавиться. Хоть 20000 микрофарад ставь, хоть экранируй всё, что можно.


А тут как раз на счастье, сгорел старый системник на работе. Но блок питания ATX ещё рабочий. Вот и приткнём его для магнитолы. Хотя по паспорту автомагнитолы и ихние усилители питаются напряжением 12В, но мы то знаем, что гораздо мощнее она будет звучать если подать на неё 15-17В. По крайней мере за всю мою историю ещё ни один ресивер не сгорел от лишних 5-ти вольт.

Так как в имеющемся БП ATX напряжение 12-ти вольтовой шины было всего чуть больше 10В (может потому и не работал системник? Поздно.), будем поднимать его изменением управляющего напряжения на 2-м выводе TL494. Принципиальную схему компьютерного блока питания смотрите тут.

Проще говоря поменяем резистор или вообще впаяем его на дорожки другого номинала. Ставлю два килоома и вот 10,5В превращаются в 17. Надо меньше? - Увеличиваем сопротивление. Стартуется компьютерный блок питания замыканием зелёного провода на любой чёрный.


Так как места в корпусе будущего музыкального центра не много - вытаскиваем плату импульсного блока питания ATX из родного корпуса (коробочка пригодится для моего будущего проекта), и тем самым уменьшаем габариты БП в два раза. И не забываем перепаять конденсатор фильтра в БП на более высокое напряжение, а то мало ли что...



А кулер? - Спросит внимательный и сообразительный радиолюбитель. Он нам не нужен. Эксперименты показали, что при токе 5А 17В в течении часа работы магнитолы на максимальной громкости (за соседей не беспокойтесь - два резистора 4 Ома 25 ватт), радиатор диодов был немного тёплый, а транзисторов - почти холодный. Так что нагрузку до 100 ватт такой БП ATX будет держать без проблем.

Обсудить статью ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX